Department of Applied Physics and Materials Science - Materials Science

Course Descriptions

Courses offered in Materials Science are listed below. Be aware that some courses are not offered every year; see the course schedule page to check if the class is offered this year.


Materials Science Courses

  • MS 78 abc. Senior Thesis. 9 units; first, second, third terms. Prerequisite: instructor’s permission. Supervised research experience, open only to senior materials science majors. Starting with an open-ended topic, students will plan and execute a project in materials science and engineering that includes written and oral reports based upon actual results, synthesizing topics from their course work. Only the first term may be taken pass/fail. Instructor: Staff.
  • MS 90. Materials Science Laboratory. 9 units (1-6-2); third term. An introductory laboratory in relationships between the structure and properties of materials. Experiments involve materials processing and characterization by X-ray diffraction, scanning electron microscopy, and optical microscopy. Students will learn techniques for measuring mechanical and electrical properties of materials, as well as how to optimize these properties through microstructural and chemical control. Independent projects may be performed depending on the student’s interests and abilities. Instructor: Staff.
  • MS 100. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of students working toward the M.S. degree or of qualified undergraduate students. Graded pass/fail for research and reading. Instructor: Staff.
  • APh/MS 105 abc. States of Matter. 9 units (3-0-6); first, second, third terms. For course description, see Applied Physics. APh/MS 105ab not offered 2017-2018. Instructor APh/MS 105c: Fultz.
  • MS 110 abc. Materials Research Lectures. 1 unit; first, second, third terms. A seminar course designed to introduce advanced undergraduates and graduate students to modern research in materials science. Instructor: Bernardi.
  • MS 115. Fundamentals of Materials Science. 9 units (3-0-6); first term. Prerequisites: Ph 2. An introduction to the structure and properties of materials and the processing routes utilized to optimize properties. All major classes of materials are covered, including metals, ceramics, electronic materials, composites, and polymers. The relationships between chemical bonding, crystal structure, thermodynamics, phase equilibria, microstructure, and properties are described. Instructor: Faber.
  • MS/ME/MedE 116. Mechanical Behavior of Materials. 9 units (3-0-6); second term. Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure, defects, and mechanical properties. Elastic, anelastic, and plastic properties of crystalline and amorphous materials. Polymer and glass properties: viscoelasticity, flow, and strain-rate dependence. The relationships between stress, strain, strain rate, and temperature for deformable solids. Application of dislocation theory to strengthening mechanisms in crystalline solids. The phenomena of creep, fracture, and fatigue, and their controlling mechanisms. Instructor: Greer.
  • MS/APh 122. Diffraction, Imaging, and Structure. 9 units (0-4-5); first, second terms. Prerequisites: MS 132, may be taken concurrently. Experimental methods in transmission electron microscopy of inorganic materials including diffraction, spectroscopy, conventional imaging, high resolution imaging and sample preparation. Weekly laboratory exercises to complement material in MS 132. Instructor: Staff.
  • MS 125. Advanced Transmission Electron Microscopy. 9 units (1-6-2); third term. Prerequisite: MS 122. Diffraction contrast analysis of crystalline defects. Phase contrast imaging. Physical optics approach to dynamical electron diffraction and imaging. Microbeam methods for diffraction and imaging. Chemical analysis by energy dispersive X-ray spectrometry and electron energy loss spectrometry. Instructor: Staff. Not offered 2017–2018.
  • MS 131. Structure and Bonding in Materials. 9 units (3-0-6); first term. Prerequisites: graduate standing or introductory quantum mechanics. Electronic structure and orbitals in atoms. Structure and symmetry of crystals. Reciprocal space and Brillouin zone. Born-Oppenheimer approximation. Bloch states and band theory. Tight binding and plane-waves. Lattice vibrations and lattice waves. Total energy, entropy, and Gibbs free energy in solids. Stability criteria. Bonding and electronic structure in metals, semiconductors, ionic crystals, and transition metal oxides. Point and line defects. Introduction to surfaces and amorphous materials. Instructor: Bernardi.
  • MS 132. Diffraction and Structure. 9 units (3-0-6); second term. Prerequisites: graduate standing or instructor’s permission. Principles of electron, X-ray, and neutron diffraction with applications to materials characterization. Imaging with electrons, and diffraction contrast of crystal defects. Kinematical theory of diffraction: effects of strain, size, disorder, and temperature. Correlation functions in solids, with introduction to space-time correlation functions. Instructor: Fultz.
  • MS 133. Kinetic Processes in Materials. 9 units (3-0-6); third term. Prerequisite: APh 105 b or ChE/Ch 164, or instructor’s permission. Kinetic master equation, uncorrelated and correlated random walk, diffusion. Mechanisms of diffusion and atom transport in solids, liquids, and gases. Coarsening of microstructures. Nonequilibrium processing of materials. Instructor: Greer/Kornfield.
  • MS 142. Application of Diffraction Techniques in Materials Science. 9 units (2-3-4); second term. Prerequisite: Instructor’s permission. Applications of X-ray and neutron diffraction methods to the structural characterization of materials. Emphasis is on the analysis of polycrystalline materials but some discussion of single crystal methods is also presented. Techniques include quantitative phase analysis, crystalline size measurement, lattice parameter refinement, internal stress measurement, quantification of preferred orientation (texture) in materials, Rietveld refinement, and determination of structural features from small angle scattering. Homework assignments will focus on analysis of diffraction data. Samples of interest to students for their thesis research may be examined where appropriate. Not offered 2017-2018.
  • MS 150abc. Topics in Materials Science. Units to be arranged; first, second, third terms. Content will vary from year to year, but will be at a level suitable for advanced undergraduate or graduate students. Topics are chosen according to the interests of students and faculty. Visiting faculty may present portions of the course. Instructor: Staff.
  • MS/ME 161. Imperfections in Crystals. 9 units (3-0-6); third term. Prerequisite: graduate standing or MS 115. The relation of lattice defects to the physical and mechanical properties of crystalline solids. Introduction to point imperfections and their relationships to transport properties in metallic, covalent, and ionic crystals. Kroeger-Vink notation. Introduction to dislocations: geometric, crystallographic, elastic, and energetic properties of dislocations. Dislocation reactions and interactions including formation of locks, stacking faults, and surface effects. Relations between collective dislocation behavior and mechanical properties of crystals. Introduction to computer simulations of dislocations. Grain boundaries. The structure and properties of interfaces in solids. Emphasis on materials science aspects of role of defects in electrical, morphological, optical, and mechanical properties of solids. Not offered 2017–2018.
  • MS/ME 166. Fracture of Brittle Solids. 9 units (3-0-6); third term. Prerequisites: MS 115a (or equivalent). The mechanical response of brittle materials (ceramics, glasses and some network polymers) will be treated using classical elasticity, energy criteria, and fracture mechanics. The influence of environment and microstructure on mechanical behavior will be explored. Transformation toughened systems, large-grain crack-bridging systems, nanostructured ceramics, porous ceramics, anomolous glasses, and the role of residual stresses will be highlighted. Strength, flaw statistics and reliability will be discussed. Instructor: Faber.
  • EST/MS/ME 199. Special Topics in Energy Science and Technology. Units to be arranged. For course description, see Energy Science and Technology.
  • MS 200. Advanced Work in Materials Science. The staff in materials science will arrange special courses or problems to meet the needs of advanced graduate students.
  • Ae/AM/MS/ME 213. Mechanics and Materials Aspects of Fracture. 9 units (3-0-6). For course description, see Aerospace.
  • APh/MS 256. Computational Solid State Physics and Materials Science. 9 units (3-3-3); third term. Prerequisites: Ph125 or equivalent and APh114ab or equivalent. For course description, see Applied Physics.
  • ME/MS 260. Micromechanics. 9 units (3-0-6). For course description, see Mechanical Engineering.
  • MS 300. Thesis Research.