New Breed of Optical Soliton Wave Discovered
09-06-16
Kerry Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics, and colleagues have discovered a new type of optical soliton wave that travels in the wake of other soliton waves, hitching a ride on and feeding off of the energy of the other wave. Solitons are localized waves that act like particles. Professor Vahala likens these newly discovered solitons to pilot fish, carnivorous tropical fish that swim next to a shark so they can pick up scraps from the shark's meals. And by swimming in the shark's wake, the pilot fish reduce the drag of water on their own body, so they can travel with less effort. [Caltech story]
Tags:
APhMS
research highlights
Kerry Vahala
Engineering Nanodevices to Store Information the Quantum Way
05-27-16
Stevan Nadj-Perge, Assistant Professor of Applied Physics and Materials Science, is interested in creating a device that could harness the power of entangled particles within a usable technology. A large part of his research is focused on finding ways to store and process quantum information. Quantum information is very fragile and even the smallest amount of external noise messes up quantum states. There are various schemes that tackle this problem and postpone decoherence, but the one that he is most interested in involves Majorana fermions. Relatively recently theorists figured out how to engineer these particles in the lab. Nadj-Perge explains, “it turns out that, under certain conditions, when you combine certain materials and apply high magnetic fields at very cold temperatures, electrons will form a state that looks exactly as you would expect from Majorana fermions. Furthermore, such engineered states allow you to store quantum information in a way that postpones decoherence.” [Caltech story]
Tags:
APhMS
research highlights
Stevan Nadj-Perge
Using Applied Physics to Explain How Accretion Disks Drive Astrophysical Jets
04-01-16
Paul M. Bellan, Professor of Applied Physics, has developed a new model explaining why astrophysical jets always originate from stars having accretion disks, the progenitors of planets. The relationship between jets and accretion disks has eluded scientists for many years and what happens to the angular momentum of accreting particles has also long been a mystery. Professor Bellan’s model explains how the disks power the jets as well as how angular momentum is removed from accreting material in the disks. The model involves peculiar inward spiraling trajectories of clumps of charged and neutral particles, and shows that the disk and jets together form an electric circuit where the disk is the battery and the jet is the load. [Read the Paper]
Tags:
APhMS
research highlights
Paul Bellan
Seeking a Balanced Equation
03-21-16
Applied Physics graduate student Peter Hung, working with Professor Roukes, is one of the Caltech students featured in a recent E&S article. “In our lab, we shoot molecules of different sizes and shapes at really small mechanical resonators—tiny bridges almost 1,000 times smaller than the width of your hair—and use the change in the resonant frequency (how fast these bridges are vibrating) to reconstruct the shape and mass of the molecules that we’re shooting,” Hung explains. [E&S article]
Tags:
APhMS
research highlights
Michael Roukes
Peter Hung
Moriah Bischann Wins SURF Speaking Competition
02-04-16
Material science undergraduate student Moriah Bischann, mentored by aerospace postdoctoral scholar, Dr. Owen Kingstedt, is the winner of the Doris S. Perpall Summer Undergraduate Research Fellowships (SURF) Speaking Competition. She was recognized as the best speakers-out of the 200 students who presented their SURF research. Her summer research focused on exploring the next generation of structural materials. During her ten week SURF project she studied the effects of alloying and processing on the dynamic behavior of magnesium (Mg). This work was done to address the larger question of whether Mg is a useful material for the automotive, aerospace, energy, and defense industries where a material is needed that has low density, but also the strength to withstand high impact forces.
More »
Tags:
APhMS
honors
research highlights
GALCIT
Moriah Bischann
Owen Kingstedt
Novel Calibration Tool Will Help Astronomers
01-27-16
Kerry Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics; Executive Officer for Applied Physics and Materials Science, and colleagues have developed a novel calibration tool, called a laser frequency comb, which could allow astronomers to take a major step in discovering and characterizing earthlike planets around other stars. The comb produces easily resolvable lines, without any need for filtering and is built from off-the-shelf components developed by the telecommunications industry. "We have demonstrated an alternative approach that is simple, reliable, and relatively inexpensive," says Professor Vahala. [Caltech story]
Tags:
APhMS
research highlights
Kerry Vahala
Microscopic Materials
01-14-16
Marco Bernardi, Assistant Professor of Applied Physics and Materials Science, is fascinated by the interactions of quasiparticles and how they give rise to the world around us. He explains, “I'm most excited about the emphasis on fundamental science here. People can be really tempted by "flashy" science or experiments on hot topics. But to compute what I'm trying to look at, we have to first build our understanding on simple experiments and materials—boring things—before we are able to tackle materials at the frontier of condensed matter research.” [Interview with Prof. Bernardi]
Tags:
APhMS
research highlights
Marco Bernardi