Microstructures Self-Assemble into New Materials
03-03-20
A new process developed at Caltech makes it possible for the first time to manufacture large quantities of materials whose structure is designed at a nanometer scale—the size of DNA's double helix. Pioneered by Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, "nanoarchitected materials" exhibit unusual, often surprising properties—for example, exceptionally lightweight ceramics that spring back to their original shape, like a sponge, after being compressed. Now, a team of engineers at Caltech and ETH Zurich have developed a material that is designed at the nanoscale but assembles itself—with no need for the precision laser assembly. "We couldn't 3-D print this much nanoarchitected material even in a month; instead we're able to grow it in a matter of hours," says Carlos M. Portela, Postdoctoral Scholar. "It is exciting to see our computationally designed optimal nanoscale architectures being realized experimentally in the lab," says Dennis M. Kochmann, Visiting Associate. [Caltech story]
Tags:
APhMS
research highlights
GALCIT
MedE
MCE
Julia Greer
KNI
Dennis Kochmann
postdocs
Carlos Portela
Ultrasound Can Selectively Kill Cancer Cells
02-05-20
Michael Ortiz, Frank and Ora Lee Marble Professor of Aeronautics and Mechanical Engineering, Emeritus, and Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, are exploring a new technique that could offer a targeted approach to fighting cancer. Low-intensity pulses of ultrasound have been shown to selectively kill cancer cells while leaving normal cells unharmed. In the past, ultrasound waves have been used as a cancer treatment with high-intensity bursts resulting in killing cancer and normal cells. [Caltech story]
Tags:
APhMS
research highlights
GALCIT
MedE
MCE
Morteza Gharib
Michael Ortiz
Moriah Bischann Wins SURF Speaking Competition
02-04-16
Material science undergraduate student Moriah Bischann, mentored by aerospace postdoctoral scholar, Dr. Owen Kingstedt, is the winner of the Doris S. Perpall Summer Undergraduate Research Fellowships (SURF) Speaking Competition. She was recognized as the best speakers-out of the 200 students who presented their SURF research. Her summer research focused on exploring the next generation of structural materials. During her ten week SURF project she studied the effects of alloying and processing on the dynamic behavior of magnesium (Mg). This work was done to address the larger question of whether Mg is a useful material for the automotive, aerospace, energy, and defense industries where a material is needed that has low density, but also the strength to withstand high impact forces.
More »
Tags:
APhMS
honors
research highlights
GALCIT
Moriah Bischann
Owen Kingstedt
Space Solar Power Initiative
04-28-15
Caltech and Northrop Grumman Corporation have signed a $17.5 million sponsored research agreement for the development of the Space Solar Power Initiative (SSPI). The initiative will develop technologies in three areas: high-efficiency ultralight photovoltaics; ultralight deployable space structures; and phased array and power transmission. "The Space Solar Power Initiative brings together electrical engineers, applied physicists, and aerospace engineers in the type of profound interdisciplinary collaboration that is seamlessly enhanced at a small place like Caltech... We are working on extremely difficult problems that could eventually provide the world with new, and very cost-competitive technology for sustainable energy,” said EAS Chair Ares Rosakis. [Caltech story] [Northrop Grumman Release]
Tags:
APhMS
EE
energy
research highlights
GALCIT
Harry Atwater
Ares Rosakis
Ali Hajimiri
Sergio Pellegrino