Department of Applied Physics and Materials Science - Materials Science

News & Events

Highlights

A Method to Map Brain Circuits in Real Time

10-16-20

A new approach called integrated neurophotonics could allow researchers to track the activity of all the neurons that make up a particular brain circuit. To deepen their understanding of the brain, neuroscientists must be able to map in great detail the neural circuits that are responsible for tasks such as processing sensory information or forming new memories. Now, a new approach may allow for the activity of all of the thousands to millions of neurons within a particular brain circuit to be observed in real time. Dense recording at depth—that is the key," says Michael Roukes, Frank J. Roshek Professor of Physics, Applied Physics, and Bioengineering. [Caltech story]

Tags: APhMS research highlights Michael Roukes KNI

New Device Powers Wearable Sensors Through Human Motion

10-16-20

Wei Gao, Assistant Professor of Medical Engineering, has been developing sensors as well as novel approaches to power them. Previously, he created a sensor that could monitor health indicators in human sweat that is powered by sweat itself. Now, Gao has developed a new way to power wireless wearable sensors: He harvests kinetic energy that is produced by a person as they move around. "Instead of using fancy materials, we use commercially available flexible circuit boards," he says. "This material is cheap and very durable and mechanically robust over long periods of time." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Professor Gao Unveils Sensor that Rapidly Detects COVID-19 Infection Status, Severity, and Immunity

10-02-20

One feature of the COVID-19 virus that makes it so difficult to contain is that it can be easily spread to others by a person who has yet to show any signs of infection. Wei Gao, Assistant Professor of Medical Engineering, has developed a new type of multiplexed test (a test that combines multiple kinds of data) with a low-cost sensor that may enable the at-home diagnosis of a COVID infection through rapid analysis of small volumes of saliva or blood, without the involvement of a medical professional, in less than 10 minutes. "This is the only telemedicine platform I've seen that can give information about the infection in three types of data with a single sensor," Gao says. "In as little as a few minutes, we can simultaneously check these levels, so we get a full picture about the infection, including early infection, immunity, and severity." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Research Selected for JFM Cover

09-22-20

The Journal of Fluid Mechanics has selected "Effect of the dynamic slip boundary condition on the near-wall turbulent boundary layer" by Cong Wang, Research Engineer, and Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, as its cover article for volume 901, October 2020.

Tags: APhMS GALCIT MedE Morteza Gharib KNI Cong Wang

Advancing Future Quantum Science Efforts

08-27-20

Five new Department of Energy centers will apply quantum information science to emerging technologies. The centers will develop cutting-edge quantum technologies for use in a wide range of possible applications including scientific computing; fundamental physics and chemistry research; and the design of solar cells and of new materials and pharmaceuticals. Caltech faculty will participate in four of the new science centers: the Quantum Systems Accelerator, led by the Lawrence Berkeley National Laboratory, also known as Berkeley Lab; the Quantum Science Center, led by Oak Ridge National Laboratory; Q-NEXT, led by Argonne National Laboratory; and the Co-design Center for Quantum Advantage, led by Brookhaven National Laboratory. [Caltech story]

Tags: APhMS EE research highlights MedE CMS Oskar Painter KNI Andrei Faraon

Isabella Yang receives Baxter Young Investigator Award

08-18-20

Graduate student Yiran (Isabella) Yang, working with Wei Gao, Assistant Professor of Medical Engineering, has received a first-tier Baxter Young Investigator Award for her research on a wearable sweat sensor for clinical nutrition. This award is given for an outstanding research work which aligns with Baxter’s mission of saving and sustaining patients’ lives.

Tags: APhMS honors MedE KNI Wei Gao Isabella Yang

Collecting Hot Carriers: New Process Harvests Excited Quasiparticles

08-12-20

Harry Atwater, Howard Hughes Professor of Applied Physics and Materials Science; Director, Joint Center for Artificial Photosynthesis, has developed a way to eke more energy out of solar power by collecting freshly charged particles before they have an opportunity to cool off. This fundamental research could one day help scientists harvest energy from the sun more efficiently than by the natural photosynthesis used by plants. "If hot carriers, transporting more energy, could be captured, we would be able to wring three to four times as much energy from solar power," says Atwater. [Caltech story]

Tags: APhMS research highlights Harry Atwater KNI

A Pathway to Longer-Lasting Lithium Batteries

08-06-20

The energy density of batteries have been a major challenge for consumer electronics, electric vehicles, and renewable energy sources. Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, has made a discovery that could lead to lithium-ion batteries that are both safer and more powerful. Findings provide guidance for how lithium-ion batteries, one of the most common kinds of rechargeable batteries, can safely hold up to 50 percent more energy. "Every power-requiring application would benefit from batteries with lithium instead of graphite anodes because they can power so much more," says Greer. "Lithium is lightweight, it doesn't occupy much space, and it's tremendously energy dense." [Caltech story]

Tags: APhMS research highlights MCE Julia Greer KNI

Superconducting Twisted Bilayer Graphene—Magic not Needed?

07-16-20

A new study shows that superconductivity in twisted bilayer graphene can exist away from the magic angle when coupled to a two-dimensional semiconductor. "Our observations were quite unexpected. It implies that we only scratched the surface of graphene twistronics. These are exciting times for the field," says Stevan Nadj-Perge, Assistant Professor of Applied Physics and Materials Science. [Caltech story]

Tags: APhMS research highlights KNI Stevan Nadj-Perge

Optical Microcomb Device May Result in Improved Telecommunications, Sensors, Clocks

06-19-20

Modern telecommunications often makes use of multiple lasers of different colors to transmit data, but a new device the size of a cigarette pack can replace them. A team of researchers from Caltech, UC Santa Barbara, and the Swiss Federal Institute of Technology Lausanne (EPFL) have developed a new device that will lead to improved optical data transmission and could have applications ranging from communications to the miniaturization of time standards or to the search for exoplanets. Their device converts laser light of a single frequency into an evenly spaced set of many distinct frequencies (a comb of frequencies). The resulting optical frequency microcomb is built from a single piece of silicon, in much the same way as computer chips. And its many colors can replace many separate lasers for data transmission. "The new approach makes the process as easy as switching on a room light," says co-author Kerry Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics and executive officer for Applied Physics and Materials Science. [Caltech story]

Tags: APhMS research highlights Kerry Vahala KNI