Beaming Clean Energy From Space
10-26-22
Once considered science fiction, technology capable of collecting solar power in space and beaming it to Earth to provide a global supply of clean and affordable energy is moving closer to reality. Through the Space-based Solar Power Project (SSPP), a team of Caltech researchers is working to deploy a constellation of modular spacecraft that collect sunlight, transform it into electricity, then wirelessly transmit that electricity wherever it is needed—including to places that currently have no access to reliable power. "This is an extraordinary and unprecedented project," says Harry Atwater, Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance. "It exemplifies the boldness and ambition needed to address one of the most significant challenges of our time, providing clean and affordable energy to the world." [Caltech story]
Tags:
APhMS
EE
research highlights
MedE
MCE
Harry Atwater
Ali Hajimiri
Sergio Pellegrino
Mimicking Termites to Generate New Materials
08-26-22
Inspired by the way termites build their nests, researchers at Caltech have developed a framework to design new materials that mimic the fundamental rules hidden in nature's growth patterns. "We thought that by understanding how a termite contributes to the nest's fabrication, we could define simple rules for designing architected materials with unique mechanical properties," says Chiara Daraio, G. Bradford Jones Professor of Mechanical Engineering and Applied Physics; Investigator, Heritage Medical Research Institute. [Caltech story]
Tags:
APhMS
research highlights
Chiara Daraio
MCE
Material Inspired by Chain Mail Transforms from Flexible to Rigid on Command
08-12-21
Engineers at Caltech and JPL have developed a material inspired by chain mail that can transform from a foldable, fluid-like state into specific solid shapes under pressure. "We wanted to make materials that can change stiffness on command," says Chiara Daraio, G. Bradford Jones Professor of Mechanical Engineering and Applied Physics. "We'd like to create a fabric that goes from soft and foldable to rigid and load-bearing in a controllable way." To explore what materials would work best, Daraio, together with former Caltech postdoctoral researcher Yifan Wang and former Caltech graduate student Liuchi Li (PhD '19) as co-lead authors of the Nature paper, designed a number of configurations of linked particles, from linking rings to linking cubes to linking octahedrons (which resemble two pyramids connected at the base). The materials were 3-D printed out of polymers and even metals, with help from Douglas Hofmann, principal scientist at JPL, which Caltech manages for NASA. These configurations were then simulated in a computer with a model from the group of José E. Andrade, the George W. Housner Professor of Civil and Mechanical Engineering and Caltech's resident expert in the modeling of granular materials. [Caltech story]
Tags:
APhMS
Chiara Daraio
MCE
Jose Andrade
KNI
Yifan Wang
Liuchi Li
Nano-Architected Material Resists Impact Better Than Kevlar
06-25-21
Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, has developed a nano-architected material made from tiny carbon struts that is, pound for pound, more effective at stopping a projectile than Kevlar, a material commonly used in personal protective gear. "The knowledge from this work could provide design principles for ultra-lightweight impact resistant materials for use in efficient armor materials, protective coatings, and blast-resistant shields desirable in defense and space applications," says Greer. [Caltech story]
Tags:
APhMS
research highlights
MedE
MCE
Julia Greer
KNI