Department of Applied Physics and Materials Science - Materials Science

News & Events

Highlights

New Device Powers Wearable Sensors Through Human Motion

10-16-20

Wei Gao, Assistant Professor of Medical Engineering, has been developing sensors as well as novel approaches to power them. Previously, he created a sensor that could monitor health indicators in human sweat that is powered by sweat itself. Now, Gao has developed a new way to power wireless wearable sensors: He harvests kinetic energy that is produced by a person as they move around. "Instead of using fancy materials, we use commercially available flexible circuit boards," he says. "This material is cheap and very durable and mechanically robust over long periods of time." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Professor Gao Unveils Sensor that Rapidly Detects COVID-19 Infection Status, Severity, and Immunity

10-02-20

One feature of the COVID-19 virus that makes it so difficult to contain is that it can be easily spread to others by a person who has yet to show any signs of infection. Wei Gao, Assistant Professor of Medical Engineering, has developed a new type of multiplexed test (a test that combines multiple kinds of data) with a low-cost sensor that may enable the at-home diagnosis of a COVID infection through rapid analysis of small volumes of saliva or blood, without the involvement of a medical professional, in less than 10 minutes. "This is the only telemedicine platform I've seen that can give information about the infection in three types of data with a single sensor," Gao says. "In as little as a few minutes, we can simultaneously check these levels, so we get a full picture about the infection, including early infection, immunity, and severity." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Research Selected for JFM Cover

09-22-20

The Journal of Fluid Mechanics has selected "Effect of the dynamic slip boundary condition on the near-wall turbulent boundary layer" by Cong Wang, Research Engineer, and Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, as its cover article for volume 901, October 2020.

Tags: APhMS GALCIT MedE Morteza Gharib KNI Cong Wang

Advancing Future Quantum Science Efforts

08-27-20

Five new Department of Energy centers will apply quantum information science to emerging technologies. The centers will develop cutting-edge quantum technologies for use in a wide range of possible applications including scientific computing; fundamental physics and chemistry research; and the design of solar cells and of new materials and pharmaceuticals. Caltech faculty will participate in four of the new science centers: the Quantum Systems Accelerator, led by the Lawrence Berkeley National Laboratory, also known as Berkeley Lab; the Quantum Science Center, led by Oak Ridge National Laboratory; Q-NEXT, led by Argonne National Laboratory; and the Co-design Center for Quantum Advantage, led by Brookhaven National Laboratory. [Caltech story]

Tags: APhMS EE research highlights MedE CMS Oskar Painter KNI Andrei Faraon

Isabella Yang receives Baxter Young Investigator Award

08-18-20

Graduate student Yiran (Isabella) Yang, working with Wei Gao, Assistant Professor of Medical Engineering, has received a first-tier Baxter Young Investigator Award for her research on a wearable sweat sensor for clinical nutrition. This award is given for an outstanding research work which aligns with Baxter’s mission of saving and sustaining patients’ lives.

Tags: APhMS honors MedE KNI Wei Gao Isabella Yang

Wei Gao Receives IEEE EMBS Academic Early Career Achievement Award

06-16-20

Wei Gao, Assistant Professor of Medical Engineering, has won the 2020 IEEE EMBS Academic Early Career Achievement Award for innovative and pioneering contributions in the field of bioelectronic devices from wearable biosensors for continuous personalized health monitoring to synthetic micro/nanorobotics for in vivo biomedical applications. This award is given annually to an individual for significant contributions to the field of biomedical engineering as evidenced by innovative research design, product development, patents, and/or publications made by an individual who is within 10 years of completing their highest degree at the time of the nomination.

Tags: APhMS honors MedE KNI Wei Gao

Professor Gao Named Young Scientist by the World Economic Forum

05-26-20

Wei Gao, Assistant Professor of Medical Engineering, has been selected as a 2020 Young Scientist by the World Economic Forum. Each year the selection Committee honours 25 Young Scientists under the age of 40 in recognition of their contribution to cutting-edge research. Candidates are selected based on their achievements in expanding the boundaries of knowledge and practical applications of science in issues as diverse as child psychology, chemical oceanography and artificial intelligence. Gao's research is focused on developing skin-interfaced wearable biosensors that will enable analytics through sweat rather than blood, leading to non-invasive and real-time analysis and timely medical intervention. [2020 Young Scientists] [Brochure]

Tags: APhMS honors MedE KNI Wei Gao

Michael Yao Receives 2020 Henry Ford II Scholar Award

05-19-20

Applied physics student Michael Yao, advised by Mikhail Shapiro, Professor of Chemical Engineering; Investigator, Heritage Medical Research Institute, and Andrei Faraon, Professor of Applied Physics and Electrical Engineering, is a recipient of the 2020 Henry Ford II Scholar Award. At the intersection between physics and medicine, Michael is interested in how physical and computational tools can be used to enhance the ability to image and treat diseases within the body. This summer, he will be working as a SURF fellow to explore the applications of ultrasound in improving both the safety and efficacy of immunotherapy and other cancer treatments. Encouraged by his mentors and coursework at Caltech, Michael will be pursuing a physician-scientist training program following graduation. The Henry Ford II Scholar Award is funded under an endowment provided by the Ford Motor Company Fund. The award is made annually to engineering students with the best academic record at the end of the third year of undergraduate study.

Tags: APhMS honors MedE Henry Ford II Scholar Award KNI Mikhail Shapiro Michael Yao

Electronic Skin Fully Powered by Sweat Can Monitor Health

04-23-20

One of the ways we experience the world around us is through our skin. From sensing temperature and pressure to pleasure or pain, the many nerve endings in our skin tell us a great deal. Our skin can also tell the outside world a great deal about us as well. Wei Gao, Assistant Professor of Medical Engineering has developed an electronic skin, or e-skin, that is applied directly on top of your real skin. "We want this system to be a platform," he says. "In addition to being a wearable biosensor, this can be a human–machine interface. The vital signs and molecular information collected using this platform could be used to design and optimize next-generation prosthetics." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Microstructures Self-Assemble into New Materials

03-03-20

A new process developed at Caltech makes it possible for the first time to manufacture large quantities of materials whose structure is designed at a nanometer scale—the size of DNA's double helix. Pioneered by Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, "nanoarchitected materials" exhibit unusual, often surprising properties—for example, exceptionally lightweight ceramics that spring back to their original shape, like a sponge, after being compressed. Now, a team of engineers at Caltech and ETH Zurich have developed a material that is designed at the nanoscale but assembles itself—with no need for the precision laser assembly. "We couldn't 3-D print this much nanoarchitected material even in a month; instead we're able to grow it in a matter of hours," says Carlos M. Portela, Postdoctoral Scholar. "It is exciting to see our computationally designed optimal nanoscale architectures being realized experimentally in the lab," says Dennis M. Kochmann, Visiting Associate. [Caltech story]

Tags: APhMS research highlights GALCIT MedE MCE Julia Greer KNI Dennis Kochmann postdocs Carlos Portela