Department of Applied Physics and Materials Science - Materials Science

News & Events


Abigail Jiang Wins SURF Speaking Competition


Materials science undergraduate student Abigail Jiang is the winner of the Doris S. Perpall Summer Undergraduate Research Fellowships (SURF) Speaking Competition. She was recognized as the best speaker out of 200 students who presented their SURF research. Abigail's SURF project was entitled, “Developing Physical Lab Infrastructure for Thin Film Material Growth and Evaluation." Robert C. Perpall, a Caltech mechanical engineering alumnus and past member of the SURF Board, created the Doris S. Perpall SURF speaking prize in 1993 as an incentive for Caltech students to give excellent oral presentations. [View Presentations]

Tags: APhMS honors Abigail Jiang

Caltech and NTT Research Launch Collaboration to Develop World’s Fastest Coherent Ising Machine


Researchers from Caltech and NTT Research are collaborating to develop a high-speed Coherent Ising Machine (CIM). A CIM is a network of optical parametric oscillators (OPOs) programmed to solve problems that have been mapped to an Ising model, which is a mathematical abstraction of magnetic systems composed of competitively interacting spins, or angular momentums of fundamental particles. The principal investigator at Caltech for this four-and-a-half-year joint project is Kerry Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics; Executive Officer for Applied Physics and Materials Science. “We are delighted at the prospect of working with Professor Vahala to develop an extremely small and high-speed CIM,” said NTT Research PHI Lab Director, Yoshihisa Yamamoto. “This work will advance our understanding of the CIM’s capabilities, map well with ongoing and related work with other institutions, provide new demonstrations of this awesomely powerful new information system and, we hope, set standards for the CIM’s speed and size.” [NTT Research story] [Business Wire story]

Tags: APhMS research highlights Kerry Vahala KNI

Tiny Shape-Shifting Polymers Developed for Potential Medical Applications


Julia Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, has developed a process for generating three-dimensional architected polymers with heat-dependent "shape memory" properties: that is, when heated, the material folds and unfolds itself into a new preordained shape. These shape memory polymers could one day be used to perform complex tasks inside the human body, such as unclogging a blocked artery or pulling out a blood clot. [Caltech story]

Tags: APhMS research highlights MedE Julia Greer KNI Luizetta Elliott

Titanium Atom That Exists in Two Places at Once in Crystal to Blame for Unusual Phenomenon


Crystals are usually good at conducting heat. By definition, their atomic structure is highly organized, which allows atomic vibrations—heat—to flow through them as a wave. Austin Minnich, Professor of Mechanical Engineering and Applied Physics, has discovered why a perfect crystal is not good at conducting heat, although it seemingly should be. "We have found that quantum mechanical effects can play a huge role in setting the thermal transport properties of materials even under familiar conditions like room temperature," says Austin Minnich. [Caltech story]

Tags: APhMS research highlights MCE KNI Austin Minnich

Marco Bernardi Wins ISSNAF Young Investigator Award


Marco Bernardi, Assistant Professor of Applied Physics and Materials Science, has won the 2020 Franco Strazzabosco Award for Research in Engineering from the Italian Scientists & Scholars in North America Foundation (ISSNAF). The ISSNAF annually awards the Young Investigator Awards in various disciplines to outstanding, early-career Italian researchers working in the United States or Canada, in recognition of their significant and innovative contributions to their field of research. [Past Winners]

Tags: APhMS honors Marco Bernardi

FUTURE Ignited


Nearly 200 undergraduates from more than 120 colleges and universities across the country joined Caltech for FUTURE Ignited, a virtual event that aimed to encourage students of color to pursue graduate studies in science and engineering. The goal of FUTURE Ignited is to diversify STEM with students of color who will go on to become incredible graduate students and scientific leaders in their respective fields. [Caltech story]


A Method to Map Brain Circuits in Real Time


A new approach called integrated neurophotonics could allow researchers to track the activity of all the neurons that make up a particular brain circuit. To deepen their understanding of the brain, neuroscientists must be able to map in great detail the neural circuits that are responsible for tasks such as processing sensory information or forming new memories. Now, a new approach may allow for the activity of all of the thousands to millions of neurons within a particular brain circuit to be observed in real time. Dense recording at depth—that is the key," says Michael Roukes, Frank J. Roshek Professor of Physics, Applied Physics, and Bioengineering. [Caltech story]

Tags: APhMS research highlights Michael Roukes KNI

New Device Powers Wearable Sensors Through Human Motion


Wei Gao, Assistant Professor of Medical Engineering, has been developing sensors as well as novel approaches to power them. Previously, he created a sensor that could monitor health indicators in human sweat that is powered by sweat itself. Now, Gao has developed a new way to power wireless wearable sensors: He harvests kinetic energy that is produced by a person as they move around. "Instead of using fancy materials, we use commercially available flexible circuit boards," he says. "This material is cheap and very durable and mechanically robust over long periods of time." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Professor Gao Unveils Sensor that Rapidly Detects COVID-19 Infection Status, Severity, and Immunity


One feature of the COVID-19 virus that makes it so difficult to contain is that it can be easily spread to others by a person who has yet to show any signs of infection. Wei Gao, Assistant Professor of Medical Engineering, has developed a new type of multiplexed test (a test that combines multiple kinds of data) with a low-cost sensor that may enable the at-home diagnosis of a COVID infection through rapid analysis of small volumes of saliva or blood, without the involvement of a medical professional, in less than 10 minutes. "This is the only telemedicine platform I've seen that can give information about the infection in three types of data with a single sensor," Gao says. "In as little as a few minutes, we can simultaneously check these levels, so we get a full picture about the infection, including early infection, immunity, and severity." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Research Selected for JFM Cover


The Journal of Fluid Mechanics has selected "Effect of the dynamic slip boundary condition on the near-wall turbulent boundary layer" by Cong Wang, Research Engineer, and Morteza Gharib, Hans W. Liepmann Professor of Aeronautics and Bioinspired Engineering; Booth-Kresa Leadership Chair, Center for Autonomous Systems and Technologies; Director, Graduate Aerospace Laboratories; Director, Center for Autonomous Systems and Technologies, as its cover article for volume 901, October 2020.

Tags: APhMS GALCIT MedE Morteza Gharib KNI Cong Wang