Department of Applied Physics and Materials Science - Materials Science

News & Events


Effective Pathway to Convert Greenhouse Gas into Valuable Products


A research team from Caltech and the UCLA Samueli School of Engineering has demonstrated a promising way to efficiently convert carbon dioxide into ethylene—an important chemical used to produce plastics, solvents, cosmetics, and other important products globally. They developed nanoscale copper wires with specially shaped surfaces to catalyze a chemical reaction that reduces greenhouse gas emissions while simultaneously generating ethylene. "The idea of using copper to catalyze this reaction has been around for a long time, but the key is to accelerate the rate so it is fast enough for industrial production," says William A. Goddard III, Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics. [Caltech story]

Tags: APhMS research highlights William Goddard

Optical Clock Collaboration Awarded 2020 Team Engineering Excellence Award


The 2-Photon Optical Clock Collaboration has been awarded OSA’s 2020 Paul F. Forman Team Engineering Excellence Award. The team comprises researchers and engineers from Caltech, Charles Stark Draper Laboratory, National Institute of Standards and Technology, Stanford University, and the University of Colorado, Boulder. Caltech contributed the microwave rate frequency microcomb to the clock. [OSA story]

Tags: APhMS honors Kerry Vahala Boqiang Shen Myoung Gyun Suh Ki Youl Yang

Advancing Future Quantum Science Efforts


Five new Department of Energy centers will apply quantum information science to emerging technologies. The centers will develop cutting-edge quantum technologies for use in a wide range of possible applications including scientific computing; fundamental physics and chemistry research; and the design of solar cells and of new materials and pharmaceuticals. Caltech faculty will participate in four of the new science centers: the Quantum Systems Accelerator, led by the Lawrence Berkeley National Laboratory, also known as Berkeley Lab; the Quantum Science Center, led by Oak Ridge National Laboratory; Q-NEXT, led by Argonne National Laboratory; and the Co-design Center for Quantum Advantage, led by Brookhaven National Laboratory. [Caltech story]

Tags: APhMS EE research highlights MedE CMS Oskar Painter KNI Andrei Faraon

Kaushik Bhattacharya Receives Theodore von Kármán Prize


Kaushik Bhattacharya, Howell N. Tyson, Sr., Professor of Mechanics and Materials Science; Vice Provost, has received the 2020 Theodore von Kármán Prize. This prize is awarded for a notable application of mathematics to mechanics and/or the engineering sciences made during the five to ten years preceding the award. [SIAM story] [Caltech story]

Tags: APhMS honors MCE Kaushik Bhattacharya

Isabella Yang receives Baxter Young Investigator Award


Graduate student Yiran (Isabella) Yang, working with Wei Gao, Assistant Professor of Medical Engineering, has received a first-tier Baxter Young Investigator Award for her research on a wearable sweat sensor for clinical nutrition. This award is given for an outstanding research work which aligns with Baxter’s mission of saving and sustaining patients’ lives.

Tags: APhMS honors MedE KNI Wei Gao Isabella Yang

Collecting Hot Carriers: New Process Harvests Excited Quasiparticles


Harry Atwater, Howard Hughes Professor of Applied Physics and Materials Science; Director, Joint Center for Artificial Photosynthesis, has developed a way to eke more energy out of solar power by collecting freshly charged particles before they have an opportunity to cool off. This fundamental research could one day help scientists harvest energy from the sun more efficiently than by the natural photosynthesis used by plants. "If hot carriers, transporting more energy, could be captured, we would be able to wring three to four times as much energy from solar power," says Atwater. [Caltech story]

Tags: APhMS research highlights Harry Atwater KNI

A Pathway to Longer-Lasting Lithium Batteries


The energy density of batteries have been a major challenge for consumer electronics, electric vehicles, and renewable energy sources. Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, has made a discovery that could lead to lithium-ion batteries that are both safer and more powerful. Findings provide guidance for how lithium-ion batteries, one of the most common kinds of rechargeable batteries, can safely hold up to 50 percent more energy. "Every power-requiring application would benefit from batteries with lithium instead of graphite anodes because they can power so much more," says Greer. "Lithium is lightweight, it doesn't occupy much space, and it's tremendously energy dense." [Caltech story]

Tags: APhMS research highlights MCE Julia Greer KNI

Superconducting Twisted Bilayer Graphene—Magic not Needed?


A new study shows that superconductivity in twisted bilayer graphene can exist away from the magic angle when coupled to a two-dimensional semiconductor. "Our observations were quite unexpected. It implies that we only scratched the surface of graphene twistronics. These are exciting times for the field," says Stevan Nadj-Perge, Assistant Professor of Applied Physics and Materials Science. [Caltech story]

Tags: APhMS research highlights KNI Stevan Nadj-Perge

Ishani A. Karmarkar Receives 2020 Henry Ford II Scholar Award


Applied and computational mathematics student Ishani A. Karmarkar is a recipient of the 2020 Henry Ford II Scholar Award. Ishani is interested in data science and numerical algorithms, as well as applications to physical problems. This summer, she will be working on a SURF project on graph-based semi-supervised learning algorithms with Bamdad Hosseini, Senior Postdoctoral Scholar Research Associate, and Andrew Stuart, Bren Professor of Computing and Mathematical Sciences. In the past, she has also worked on a fluid modelling project with Sandra Troian, Professor of Applied Physics, Aeronautics, and Mechanical Engineering, and completed a summer internship at Facebook. The Henry Ford II Scholar Award is funded under an endowment provided by the Ford Motor Company Fund. The award is made annually to engineering students with the best academic record at the end of the third year of undergraduate study.

Tags: APhMS honors GALCIT MCE CMS Henry Ford II Scholar Award Sandra Troian Andrew Stuart Ishani Karmarkar

Optical Microcomb Device May Result in Improved Telecommunications, Sensors, Clocks


Modern telecommunications often makes use of multiple lasers of different colors to transmit data, but a new device the size of a cigarette pack can replace them. A team of researchers from Caltech, UC Santa Barbara, and the Swiss Federal Institute of Technology Lausanne (EPFL) have developed a new device that will lead to improved optical data transmission and could have applications ranging from communications to the miniaturization of time standards or to the search for exoplanets. Their device converts laser light of a single frequency into an evenly spaced set of many distinct frequencies (a comb of frequencies). The resulting optical frequency microcomb is built from a single piece of silicon, in much the same way as computer chips. And its many colors can replace many separate lasers for data transmission. "The new approach makes the process as easy as switching on a room light," says co-author Kerry Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics and executive officer for Applied Physics and Materials Science. [Caltech story]

Tags: APhMS research highlights Kerry Vahala KNI